North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Tangoulis, V., Paschalidou, S., Bakalbassis, E. G., Perlepes, S. P., Raptopoulou, C. P. \& Terzis, A. (1996). J. Chem. Soc. Chem. Commun. pp. 1297-1298.
Wang, S.-L., Richardson, J. W., Briggs, S. J., Jacobson, R. A. \& Jensen, W. P. (1986). Inorg. Chim. Acta, 111, 67-72.

Acta Cryst. (1998). C54, 219-221
trans-Dichlorotri(cyclohexyl)arsenic(V)

Sofia Pascu, ${ }^{a}$ Lumintta Sllaghi-Dumitrescu, ${ }^{a}$ Alexander J. Blake, ${ }^{b}$ Wan-Sheung Li, ${ }^{b}$ Ionel $H_{a m u c}{ }^{a}$ and D. Bryan Sowerby ${ }^{b}$
${ }^{a}$ Department of Chemistry, Babes-Bolyai University, R-3400 Cluj-Napoca, Romania, and ${ }^{b}$ Department of Chemistry, The University of Nottingham, University Park, Nottingham NG7 2RD, England. E-mail: a.j.blake@nottingham.ac.uk

(Received 30 September 1997; accepted 10 October 1997)

Abstract

The title molecule, $\left[\mathrm{AsCl}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right]$, has a distorted trigonal-bipyramidal geometry with three equatorial cyclohexyl groups and axial Cl atoms. The As-C distances [1.990 (2), 1.988 (2) and 1.981 (3) \AA] differ slightly, and the equatorial angles C-As-C are $117.35(10), 117.60(10)$ and $123.26(8)^{\circ}$. The angle subtended at arsenic by the axial Cl atoms is $178.60(2)^{\circ}$, but the chlorine separation distances [2.4957(7) and 2.3029 (7) \AA] differ substantially. The As atom lies out of the plane of the equatorial C atoms, suggesting a contribution from the ionic structure, [As(cyclo$\left.\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3} \mathrm{Cl}^{+} . \mathrm{Cl}^{-}$.

\section*{Comment}

Compounds of the type $E R_{3} X_{2}$ obtained by halogen (X_{2}) oxidation of triorgano derivatives of Group 15 elements, $E R_{3}$, are usually considered to have trigonal-bipyramidal structures and this geometry is found for the phosphorus compounds $\mathrm{PPh}_{3} \mathrm{~F}_{2}$ (Weller et al., 1991; Doxsee et al., 1992) and $\mathrm{P}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3} \mathrm{~F}_{2}$ (Sheldrick, 1975). However, an alternative four coordinate 'spoke' structure, $R_{3} \mathrm{P} \cdots X$ X, is observed when $R=\mathrm{Ph}$ and $X=\mathrm{Br}$ (Bricklebank et al., 1992) or I (Godfrey et al., 1991), but the corresponding chloride, $\mathrm{PPh}_{3} \mathrm{Cl}_{2}$, belongs to a third structural type with a dimeric $\left[\mathrm{Ph}_{3} \mathrm{PCl}^{+} \ldots \mathrm{Cl}^{-} \ldots+\mathrm{Cl} \cdots \mathrm{PPh}_{3}\right] \mathrm{Cl}^{-}$ structure (Godfrey et al., 1996).

The first two structural types are represented when the central element is arsenic, i.e. trigonal-bipyramidal geometry for $\mathrm{AsPh}_{3} \mathrm{~F}_{2}$ (Augustine et al., 1975), $\mathrm{AsPh}_{3} \mathrm{Br}_{2}$ (Bricklebank et al., 1995), As(neopentyl) ${ }_{3} \mathrm{Br}_{2}$ (Pazik \& George, 1989), $\mathrm{AsMe}_{3} \mathrm{Cl}_{2}$ (Hursthouse \& Steer, 1971) and the four-coordinate spoke structure for $\mathrm{AsPh}_{3} \mathrm{I}_{2}$ (McAuliffe et al., 1987; Bricklebank et al., 1995). An ionic structure, $\left[\mathrm{AsMe}_{3} \mathrm{Br}^{+} . \mathrm{Br}^{-}\right.$, has been suggested for $\mathrm{AsMe}_{3} \mathrm{Br}_{2}$ (Hursthouse \& Steer, 1971).

Trigonal-bipyramidal structures appear to be the norm when the central atom is either antimony or bismuth, for example, $\mathrm{SbPh}_{3} X_{2}$, where $X=\mathrm{Cl}$ or Br (Begley \& Sowerby, 1993), and $\mathrm{Bi} R_{3} \mathrm{Cl}_{2}$, where $R=\mathrm{Ph}$ (Hawley \& Ferguson, 1968) or p-tolyl (Chen et al., 1993), but the geometry is slightly distorted towards the rectangularpyramidal alternative for $\mathrm{SbPh}_{3} \mathrm{I}_{2}$ (Bricklebank et al., 1994).

We have recently prepared tricyclohexylarsenic dichloride, (I), and because few five-coordinate arsenic(V) structures are known and there are a number of possible geometries for this stoichiometry, we have determined its crystal structure.

(I)

The X-ray structure (Fig. 1) establishes that the compound is trigonal bipyramidal, with organic groups in equatorial and Cl atoms in axial positions, rather than adopting the four-coordinate 'spoke' alternative.

Fig. 1. A view of a molecule of the title compound with the atom-numbering scheme. Displacement ellipsoids enclose 50% probability surfaces and H atoms are shown as small spheres of arbitrary radii.

The geometry about arsenic (Table 1) is, however, distorted with two of the As-C separations effectively equal [1.990 (2) and 1.988 (2) \AA], while the third is shorter [1.981 (3) Å]; again two of the equatorial angles are effectively equal [117.4(1) and $\left.117.6(1)^{\circ}\right]$ with the third increased to $123.26(8)^{\circ}$. The equatorial angles
sum to 358.2° and the arsenic is displaced 0.154 (1) \AA below the equatorial plane towards $\mathrm{Cl2}$. Distortion of the arsenic geometry is further shown by significant differences in the two As- Cl separations [As-Cll 2.4957 (7) and As-Cl2 2.3029 (7) Å], but the Cl1-As-Cl2 angle, $178.60(2)^{\circ}$, is close to the expected value of 180°. There are no close intermolecular contacts which might account for the different As- Cl separations, but the differences could be a consequence of the specific orientations of the cyclohexyl groups. 11 of the 18 C atoms of the cyclohexyl groups, in fact, lie $0.07-1.21 \AA$ below the $\mathrm{C} 1 / \mathrm{C} 7 / \mathrm{C} 13$ plane towards Cl 2 , but if steric crowding were a factor, the bond to Cl 2 would be the longer; this is clearly not the case.

The most probable explanation is incipient ionization to give $\left[\mathrm{As}\left(\mathrm{cyclo}-\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3} \mathrm{Cl}^{+} . \mathrm{Cl}^{-}\right.$and this is supported not only by the different chlorine separations but also by the angles between the equatorial C atoms and C12, which are somewhat larger [92.84 (6), 94.86 (6) and $95.73(6)^{\circ}$] than the expected value of 90°, i.e. increasing towards the tetrahedral value. More complete ionization of this type is suggested to occur in $\mathrm{AsMe}_{3} \mathrm{Br}_{2}$ (Hursthouse \& Steer, 1971), but because of the space group symmetry $\left(P 6_{3} / m m c\right)$, the As-C $[1.93$ (2) $\AA]$ and As-Cl separations [2.45 (4) Á] in trigonal-bipyramidal $\mathrm{AsMe}_{3} \mathrm{Cl}_{2}$ are equal. The structure does include an intermolecular $\mathrm{Cl} \cdots \mathrm{Cl}$ contact [3.34(4) \AA] which is shorter than the van der Waals separation [$3.62 \AA$].

There are few examples of $\left[E R_{3} X\right]^{+}$cations, where E is a Group 15 element and X is a halogen; one is found in the $\mathrm{SbPh}_{3} \mathrm{Cl}_{2} \cdot \mathrm{SbCl}_{5}$ addition compound [$\left.\mathrm{SbPh}_{3} \mathrm{Cl}\right]\left[\mathrm{SbCl}_{6}\right]$ (Hall \& Sowerby, 1983), but even on reaction with a strong Lewis acid, there remains a residual $\mathrm{Sb} \cdots \mathrm{Cl}$ cation-anion contact and, although the $\mathrm{C}-\mathrm{Sb}-\mathrm{Cl}$ angles of 97.7 (6)-99.4 (7) ${ }^{\circ}$ lie nearer the tetrahedral value than the corresponding C-AsCl angles in the title compound, they do not closely approach it. The relative orientations of the cyclohexyl groups can be defined by: (a) the dihedral angles of 18.7(1), 40.1 (1) and 33.8 (1) ${ }^{\circ}$ between the $\mathrm{Cl} / \mathrm{C} 7 / \mathrm{C} 13$ plane and the mean planes through the $\mathrm{C} 1-\mathrm{C} 6, \mathrm{C} 7-\mathrm{C} 12$ and C13-C18 cyclohexyl groups, respectively, and (b) the angles between the mean planes through the cyclohexyl rings, which are $42.8(1), 62.7$ (1) and 51.1 (1) ${ }^{\circ}$ for the $\mathrm{Cl}-\mathrm{C} 6 / \mathrm{C} 7-\mathrm{C} 12, \mathrm{C} 7-\mathrm{C} 12 / \mathrm{C} 13-\mathrm{Cl8}$ and $\mathrm{C} 1-$ C6/C13-C18 rings, respectively.

Experimental

The title compound was obtained by refluxing tricyclohexyl$\operatorname{arsenic}(\mathrm{V})$ oxide ($2.5 \mathrm{~g}, 7.35 \mathrm{mmol}$) with thionyl chloride ($0.54 \mathrm{ml}, 7.35 \mathrm{mmol}$) in anhydrous benzene for 2 h . After removal of volatiles, the resulting solid was recrystallized from dichloromethane-hexane (3:1) as colourless crystals (m.p. 458 K). The compound has previously been obtained by treating either tricyclohexylarsenic(V) oxide or tricyclohexylarsenic(III) with phosgene (Appel \& Rebhan, 1969). Found:

C 54.8, H 8.4\%; calculated for $\mathrm{C}_{18} \mathrm{H}_{33} \mathrm{AsCl}_{2}$: C 54.7, H 8.4\%. IR (nujol): $\nu(\max) 2900(m), 1450(s), 1380(s), 1350(m)$, $1250(m), 1180(s), 1000(v s), 920(w), 900(m), 700(m)$, $550(w), 500(w)$ and $420\left(w^{\prime}\right) \mathrm{cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 3.90\left(3 \mathrm{H}, t, J=12.1 \mathrm{~Hz}, \mathrm{Cl}, \mathrm{C} 7, \mathrm{C} 13 \mathrm{H}_{a}\right), 2.25$ $\left(6 \mathrm{H}, d, J=9.9 \mathrm{~Hz}, \mathrm{C} 2, \mathrm{C} 6, \mathrm{C} 8, \mathrm{C} 12, \mathrm{Cl} 4, \mathrm{C} 18 \mathrm{H}_{a}\right), 1.83$ $\left(6 \mathrm{H}, d, J=9.9 \mathrm{~Hz}, \mathrm{C} 2, \mathrm{C} 6, \mathrm{C}, \mathrm{C} 12, \mathrm{C} 14, \mathrm{C} 18 \mathrm{H}_{e}\right)$ and 1.49 $\left(18 \mathrm{H}, m, \mathrm{C} 3, \mathrm{C} 5, \mathrm{C} 9, \mathrm{C} 11, \mathrm{C} 15, \mathrm{C} 17, \mathrm{C} 4, \mathrm{C} 10, \mathrm{C} 16 \mathrm{H}_{a}\right.$ and H_{e}). ${ }^{13} \mathrm{C}$ NMR ($75.4 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 63.95(\mathrm{C} 1, \mathrm{C} 13, \mathrm{C} 7)$, 30.55 (C2, C6, C8, C12, C14, C18), 27.67 (C3, C5, C9, C11, $\mathrm{C} 15, \mathrm{C} 17$) and 25.74 (C4, C10, C16). EI MS m / z (rel. int. \%): $359\left\{\left[\mathrm{As}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3} \mathrm{Cl}^{+}\right], 20.7\right\}, 324\left\{\left[\mathrm{As}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}^{+}\right], 25.7\right\}$, $276\left\{\left[\mathrm{As}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{2} \mathrm{Cl}^{+}\right], 16.4\right\}, 242\left\{\left[\mathrm{As}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{2}^{ \pm} \mathrm{H}\right], 5.6\right\}, 159$ $\left\{\left[\operatorname{As}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right) \mathrm{H}^{+}\right], 8.9\right\}, 158\left\{\left[\operatorname{As}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)^{+}\right], 8.6\right\}, 83\left\{\left[\mathrm{C}_{6} \mathrm{H}_{11}{ }^{+}\right]\right.$, 100\}.

Crystal data

$\left[\mathrm{AsCl}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{3}\right]$
$M_{r}=395.26$
Triclinic
$P \overline{1}$
$a=10.048$ (2) \AA
$b=10.578(15) \AA$
$c=10.611$ (2) \AA
$\alpha=73.79(2)^{\circ}$
$\beta=71.69(2)^{\circ}$
$\gamma=63.310(10)^{\circ}$
$V=943.9(14) \AA^{3}$
$Z=2$
$D_{x}=1.391 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Stoe Stadi-4 four-circle
diffractometer with
Oxford Cryosystems openflow cryostat (Cosier \& Glazer, 1986)
ω / θ scans
Absorption correction:
numerical (Stoe \& Cie, 1996a,b)
$T_{\text {min }}=0.474, T_{\text {max }}=0.572$
5216 measured reflections 3313 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.022$
$w R\left(F^{2}\right)=0.051$
$S=1.077$
3313 reflections
191 parameters
H atoms riding
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.021 P)^{2}\right.$
$+0.637 P]$
3152 reflections with
$I>2 \sigma(I)$
$R_{\text {int }}=0.020$
$\theta_{\text {max }}=25.03^{\circ}$
$h=-10 \rightarrow 11$
$k=-12 \rightarrow 12$
$l=-12 \rightarrow 12$
3 standard reflections frequency: 60 min intensity decay: 4.0%
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.52 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.34 \mathrm{e}^{-3}$
Extinction correction: SHELXL97
Extinction coefficient: 0.0067 (8)

Scattering factors from International Tables for Crystallography (Vol. C)

$$
\text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3
$$

Table 1. Selected geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{As}-\mathrm{Cl1}$	$2.4957(7)$	$\mathrm{As}-\mathrm{C} 7$	$1.988(2)$
$\mathrm{As}-\mathrm{Cl} 2$	$2.3029(7)$	$\mathrm{A}-\mathrm{Cl} 3$	$1.981(3)$
$\mathrm{A}-\mathrm{Cl}$	$1.990(2)$		

$\mathrm{Cl1}-\mathrm{As}-\mathrm{Cl} 2$	$178.60(2)$	$\mathrm{Cl} 2-\mathrm{As}-\mathrm{C} 7$	$95.73(6)$
$\mathrm{Cl1}-\mathrm{As}-\mathrm{Cl}$	$86.00(6)$	$\mathrm{Cl} 2-\mathrm{As}-\mathrm{Cl3}$	$94.86(6)$
$\mathrm{Cl1}-\mathrm{As}-\mathrm{C} 7$	$85.52(6)$	$\mathrm{Cl}-\mathrm{As}-\mathrm{C} 7$	$117.60(10)$
$\mathrm{Cl1}-\mathrm{As}-\mathrm{Cl3}$	$85.13(6)$	$\mathrm{Cl}-\mathrm{As}-\mathrm{Cl3}$	$123.26(8)$
$\mathrm{Cl} 2-\mathrm{As}-\mathrm{Cl}$	$92.84(6)$	$\mathrm{C} 7-\mathrm{As}-\mathrm{Cl3}$	$117.35(10)$

Data collection: STADI4 (Stoe \& Cie, 1996a). Cell refinement: STADI4. Data reduction: X-RED (Stoe \& Cie, 1996b). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL97 (Sheldrick, 1997). Molecular graphics: SHELXTLPC (Sheldrick, 1995). Software used to prepare material for publication: SHELXL97.

We thank EPSRC for provision of a four-circle diffractometer and for a post-doctoral award (to WSL). We also thank the British Council for financial assistance through the ROMLISS program.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FG1394). Services for accessing these data are described at the back of the journal.

References

Appel, R. \& Rebhan, D. (1969). Chem. Ber. 102, 3955-3958.
Augustine, A., Ferguson, G. \& March, F. C. (1975). Can. J. Chem. 53, 1647-1650.
Begley, M. J. \& Sowerby, D. B. (1993). Acta Cryst. C49, 1044-1046.
Bricklebank, N., Godfrey, S. M., Lane, H. P., McAuliffe, C. A. \& Pritchard, R. G. (1994). J. Chem. Soc. Dalton Trans. pp. 17591763.

Bricklebank, N., Godfrey, S. M., Lane, H. P., McAuliffe, C. A., Pritchard, R. G. \& Moreno, J.-M. (1995). J. Chem. Soc. Dalton Trans. pp. 3873-3879.
Bricklebank, N., Godfrey, S. M., Mackie, A. G., McAuliffe, C. A. \& Pritchard, R. G. (1992). J. Chem. Soc. Chem. Commun. pp. 355356.

Chen, X., Ohdoi, K., Yamamoto, Y. \& Akiba, K. (1993). Organometallics, 12, 1857-1864.
Cosier, J. \& Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.
Doxsee, K. M., Hanawalt, E. M. \& Weakley, T. J. R. (1992). Acta Cryst. C48, 1288-1290.
Godfrey, S. M., Kelly, D. G., McAuliffe, C. A., Mackie, A. G., Pritchard, R. G. \& Watson, S. M. (1991). J. Chem. Soc. Chem. Commun. pp. 1163-1164.
Godfrey, S. M., McAuliffe, C. A., Pritchard, R. G. \& Sheffield, J. M. (1996). J. Chem. Soc. Chem. Commun. pp. 2521-2522.

Hall, M. \& Sowerby, D. B. (1983). J. Chem. Soc. Dalton Trans. pp. 1095-1099.
Hawley, D. M. \& Ferguson, G. (1968). J. Chem. Soc. A, pp. 25392543.

Hursthouse, M. B. \& Steer, I. A. (1971). J. Organomet. Chem. 27, Cl1-Cl2.
McAuliffe, C. A., Beagley, B., Gott, G. A., Mackie, A. G., McRory, P. P. \& Pritchard, R. G. (1987). Angew. Chem. Int. Ed. Engl. 26, 264-265.
Pazik, J. C. \& George, C. (1989). Organometallics, 8, 482-487.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1995). SHELXTLPC. Version 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1997). SHELXL97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Sheldrick, W. S. (1975). Acta Cryst. B31, 1776-1778.
Stoe \& Cie (1996a). STADI4. Diffractometer Control Program for Windows. Version l.06a. Stoe \& Cie, Darmstadt, Germany.
Stoe \& Cie (1996b). X-RED. Data Reduction Program for Windows. Version 1.08. Stoe \& Cie, Darmstadt, Germany.
Weller, F., Nuszhär, D., Dehnicke, K., Gingl. F. \& Stähle, J. (1991). Z. Anorg. Allg. Chem. 602, 7-16.

Acta Cryst. (1998). C54, 221-223

Tricarbonyl[(4a,5,6,7,8,9- η)-2-methyl-2-phenyl- 2 H -benzo[$[f]$ chromen]chromium

Patrick Hannesschlager, ${ }^{a}$ Pierre Brun ${ }^{a}$ and Gérard PÈPE ${ }^{b}$
${ }^{a}$ GCOPL, Université d'Aix-Marseille II, Campus de Luminy, Case 901, 13288 Marseille CEDEX 9, France, and ${ }^{b}$ Centre de Recherche sur les Mécanismes de la Croissance Cristalline, Universités d'Aix-Marseille II et III, Campus de Luminy, Case 913, 13288 Marseille CEDEX 9, France. E-mail: genmol@crmc2.univ-mrs.fr

(Received 24 July 1997; accepted 21 October 1997)

Abstract

The title compound, $\left[\mathrm{Cr}\left(\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{O}\right)(\mathrm{CO})_{3}\right]$, belongs to a new family of chromene complexes exhibiting photochromic properties.

Comment

3 H -Naphthopyrans (2-H-benzochromenes) exhibit interesting photochromic properties (Becker \& Michl, 1966). These properties can be modulated by introducing selected substituents at different positions on the aromatic system. Complexation of the aromatic rings with tricarbonylchromium modifies the reactivity and also the electronic distribution within the structure, and thus we believe that it will modify the photochromic properties of 3 H -naphthopyrans. Such behaviour has been established in the case of indolino spiropyrans (Miyashita et al., 1992) and fulgides (McCabe \& Saberi, 1995). As a result of the presence of three phenyl rings in the title molecule, (I), the crystal structure analysis of this compound has been performed in order to determine the exact tricarbonylchromium position with respect to the rings. The tricarbonylchromium improves the photochromic property of the compound by decreasing its fading rate. The red colour does not indicate an open form, but is induced by the complexation.

(I)

The geometry of the chromene ring is not significantly affected by the presence of the tricarbonylchromium group, if compared with the diphenyl derivative (Aldoshin et al., 1996). However, the bonds of the phenyl ring connected to the Cr atom are longer, the mean value being 1.43 (1) \AA instead of 1.40 (1) \AA. This

